• <dd id="d4xby"><center id="d4xby"></center></dd>
    <s id="d4xby"><object id="d4xby"><input id="d4xby"></input></object></s>
  • <rp id="d4xby"></rp>
    1. <rp id="d4xby"></rp>
      <rp id="d4xby"><ruby id="d4xby"><blockquote id="d4xby"></blockquote></ruby></rp>
      <tbody id="d4xby"></tbody>

      <dd id="d4xby"></dd>
      <s id="d4xby"><acronym id="d4xby"></acronym></s>
      學習啦 > 學習方法 > 通用學習方法 > 學習方法指導 > 數學必修一函數重點知識整理

      數學必修一函數重點知識整理

      時間: 文軒0 分享

      數學必修一函數重點知識整理來了

      數學是需要堅持和耐心的學科,遇到困難不要輕易放棄。下面是小編為大家帶來的數學必修一函數重點知識整理,希望大家能夠喜歡!快來看看吧!

      數學必修一函數重點知識整理

      數學必修一函數重點知識整理

      1、函數的奇偶性

      (1)若f(x)是偶函數,那么f(x)=f(—x);

      (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

      (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

      (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

      (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

      2、復合函數的有關問題

      (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

      (2)復合函數的單調性由“同增異減”判定;

      3、函數圖像(或方程曲線的對稱性)

      (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

      (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

      (3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

      (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

      (5)若函數y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;

      (6)函數y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;

      4、函數的周期性

      (1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

      (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

      (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

      (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

      (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

      (6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

      5、方程k=f(x)有解k∈D(D為f(x)的值域);

      6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

      7、(1)(a>0,a≠1,b>0,n∈R+);

      (2)l og a N=(a>0,a≠1,b>0,b≠1);

      (3)l og a b的符號由口訣“同正異負”記憶;

      (4)a log a N= N(a>0,a≠1,N>0);

      8、判斷對應是否為映射時,抓住兩點:

      (1)A中元素必須都有象且唯一;

      (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的'象;

      9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

      10、對于反函數,應掌握以下一些結論:

      (1)定義域上的單調函數必有反函數;

      (2)奇函數的反函數也是奇函數;

      (3)定義域為非單元素集的偶函數不存在反函數;

      (4)周期函數不存在反函數;

      (5)互為反函數的兩個函數具有相同的單調性;

      (6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

      11、處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

      12、依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

      13、恒成立問題的處理方法:

      (1)分離參數法;

      (2)轉化為一元二次方程的根的分布列不等式(組)求解。

      復數模的性質:

      復數與實數、虛數、純虛數及0的關系:

      對于復數a+bi(a、b∈R),當且僅當b=0時,復數a+bi(a、b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數;當且僅當a=b=0時,z就是實數0。

      集合的分類

      集合科根據他含有的元素個數的多少分為兩類:

      有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數是可數的,因此兩個集合是有限集。

      無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無限集。

      特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

      虛數單位i:

      (1)它的平方等于-1,即i2=-1;

      (2)實數可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

      (3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。

      (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

      概率問題

      1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

      2、搞清是什么概率模型,套用哪個公式;

      3、記準均值、方差、標準差公式;

      4、求概率時,正難則反(根據p1+p2+...+pn=1);

      5、注意計數時利用列舉、樹圖等基本方法;

      6、注意放回抽樣,不放回抽樣;

      7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

      8、注意條件概率公式;

      9、注意平均分組、不完全平均分組問題。

      2006853
      么公吃我奶水边吃饭边做-太深了太爽了受不了了-久久婷婷五月综合色国产
    2. <dd id="d4xby"><center id="d4xby"></center></dd>
      <s id="d4xby"><object id="d4xby"><input id="d4xby"></input></object></s>
    3. <rp id="d4xby"></rp>
      1. <rp id="d4xby"></rp>
        <rp id="d4xby"><ruby id="d4xby"><blockquote id="d4xby"></blockquote></ruby></rp>
        <tbody id="d4xby"></tbody>

        <dd id="d4xby"></dd>
        <s id="d4xby"><acronym id="d4xby"></acronym></s>